Biomeetria praks 3

Illustreeritud (mittetäielik) tööjuhend

3. nimetage see ümber leheküljeks 'Praks3' ja

Eeltöö

- 1. Avage MS Excel' is oma kursuse ankeedivastuseid sisaldav andmestik,
- 2. lisage uus tööleht,

40 FPSU	IVI .	17.1 04
H I F F	Andmed Praks1	Praks2 2
Ready		In Worksheet (Shift+F11)

4. kopeerige kogu 'Andmed'-lehel paiknev andmetabel lehekülje 'Praks3' ülemisse vasakusse nurka.

Ülesanne 1.

- Leidke andmetabeli alla (NB! Vähemalt üks tühi rida jätke vahele!) kõigi arvtunnuste kohta vaatluste arv (n), keskmine väärtus (x̄), mediaan, standardhälve (s), standardviga (se), minimaalne ja maksimaalne väärtus, kasutades *Exceli* funktsioone.
- Lisage andmetabelisse uus tunnus nimega 'KMI' (kehamassiindeks) ja arvutage selle väärtused kõigile tudengitele valemist

KMI = Kehamass, kg / (Pikkus, m)².

Leidke eelnevalt nimetatud arvkarakteristikute väärtused ka uuele tunnusele.

Tööjuhend

1. Jätke andmetabeli alla vähemalt üks tühi rida

(see on vajalik, et *Excel* mitmete operatsioonide teostamisel – näiteks andmete sorteerimisel või filtreerimisel, *Pivot Table*'i rakendamisel – ei tõlgendaks arvutatud keskmisi ja muid näitajaid andmetabeli osana)

ja kirjutage esimesse veergu leitavate arvkarakteristikute nimed (siis on hiljem lihtsam aru saada, mida kuhugi arvutatud on).

00	IN	105	05	35	37	2-5
69	N	172	58	57	38	0-1
70						
71	Vaatluste arv					
72	Keskmine					
73	Mediaan					
74	Standardhälve					
75	Standardviga					
76	Min					
77	Max					

- 2. Arvutage kõigi arvkarakteristikute väärtused tudengite pikkuse kohta, kasutades *Exceli* funktsioone.
 - a. Selleks võite valida vastava funktsiooni *Exceli* funktsioonide listist (vajalike funktsioonide nimed leiate järgmiselt leheküljelt punktist b):

Tanel Kaart, Alo Tänavots

b. Teades funktsiooni nime ja süntaksit, võite trükkida vastava valemi ka kohe *Exceli* töölehe vastavasse lahtrisse.

(NB! Ärge unustage alustamast valemit võrdusmärgiga '='!)

Kõik need funktsioonid on rakendatavad ka eelmisel leheküljel esitatud viisil – valige ise, milline variant omale arusaadavam ja mugavam tundub (proovige nii üht kui ka teist varianti).

Vaatluste arv	=COUNT(B2:B69)
Keskmine	=AVERAGE(B2:B69)
Mediaan	=MEDIAN(B2:B69)
Standardhälve	=STDEV.S(B2:B69)
Standardviga	
Min	=MIN(B2:B69)
Max	=MAX(B2:B69)

c. Et *Excelis* puudub eraldi funktsioon standardvea leidmiseks, tuleb arvutused teostada, tuginedes standardvea arvutusvalemile

 $se = s/\sqrt{n}$

(st, et vastav valem tuleb ise sisestada):

	А	В	С
70			
71	Vaatluste arv	68	
72	Keskmine	172,9	
73	Mediaan	170	
74	Standardhälve	9,2	
75	Standardviga	= <mark>B74/</mark> SQR	T(B71)
76	Min	153	
77	Max	195	

3. Rakendage samu funktsioone ning arvutage soovitud arvkarakteristikute väärtused kõigi andmestikus sisalduvate arvtunnuste jaoks.

68	N	169	63	53	39	2-3	4	puder
69	N	172	58	57	38	0-1	4	võileib
70			Co	$py \rightarrow P$	aste 🚬 🗖			
71	Vaatluste arv	68						
72	Keskmine	172,9						
73	Mediaan	170						
74	Standardhälve	9,2						
75	Standardviga	1,1						
76	Min	153						
77	Max	195		****				
70								

Kui *Excel* seda automaatselt ei teinud, siis **ümardage keskmised, standardhälbed ja** standardvead ühe kohani peale koma.

Tulemus:

Vaatluste arv	68	68	68	68	68
Keskmine	172,9	70,0	55,1	40,5	3,5
Mediaan	170	65	55	39,5	3
Standardhälve	9,2	16,5	2,3	2,8	0,6
Standardviga	1,1	2,0	0,3	0,3	0,1
Min	153	47	49	36	3
Max	195	150	63	47	5

4. Kirjutage mõned laused uuritud tunnuste väärtuste paiknemise ja varieeruvuse kohta.

5. Lisage andmetabelisse kehamassi veeru järele tühi veerg, kirjutage esimesse lahtrisse tunnuse nimeks 'KMI' (kehamassiindeks) ja arvutage kehamassiindeksi väärtused kõigile tudengitele valemist

 $KMI = Kehamass, kg / (Pikkus, m)^2$.

	А	В	С	D	E
1	SUGU	PIKKUS	MASS	KMI	PEA_YI
2	N	160	86	=C2/((B2/:	100)^2)
3	N	162	60		

NB! Jälgi sulgude arvu ja paigutust!

Kas te saate sellest Exceli valemist aru?

- Astendamise märk ^ on enamasti saadav klahvikombinatsiooni 'AltGr' + 'Ä' tulemusel.
- Alternatiiv mingi suuruse ruutu võtmiseks on korrutada see iseendaga: (C2/100)*(C2/100);
- kasutada võib ka *Exceli* üldist astendamise funktsiooni POWER(C2/100;2) – siin esimene argument on astendatav ja teine astendaja.

		-	-			
1	SUGU	PIKKUS	MASS	KMI.	PEA_YMB	JALANR
z	N	160	86	33,59375	50	39
3	N	162	60	<u> </u>	55	37
4	N	164	51		55	38
3		165	54		54	37
-	N	165	60			20
-	M	400				44
-	n V	100	20			41
8	N	168	68		52	39
9	N	169	60		30	40
10	N	169	65		55	39
11	N	169	79		53	41
12	N	170	62		58	38
13	N	170	65		53	39
14	N	170	70		33	40
	N	177	C 1		40	40
-		472				
10	M	1/5	/0	- 1	40	
17		173	80		57	44
18	M	175	62		56	43
19	M	175	74		58	43
20	M	175	77		56	43
21	м	178	110		58	42
22	м	180	80		36	43
23	м	181			36	43
	M	401				
		182	/4		24	43
0	M	184	65		3/	44
26	м	192	89		35,5	46
27	м	193	92		52	45
28	м	195	83		56	46
29	N	153	47		53	37
30	N	159	57		54	39
31	N	160	52		53,5	38
37	N	167	40			26
	N	467				20
		105				3/
-		165	/0		52	39
s	N	166	56		34	38
36	N	166	60		34	38
37	N	169	64		56	40
38	N	169	65		38,5	38
39	N	169	70		55	40
40	N	169	73		36	38
11	N	170			1.0	20
17	N	470				20
12		170				
-5	N	170	64		56	39
44	N	170	78		57	38
45	N	171	70		54	40
46		172	55		54	38
47	N	172	75		35	39
48	N	174	64		56	39
49	N	175	80		57	41
50	N	176	-			20
	M	470				
		1/6	61		- 24	43
9Z	M	178	39		38	42
53	N	179	72		57,5	41
54	м	180	80		57	43
55	M	183	150		63	46
56	M	185	72		57	43
57	м	185	77		35	44
18	м	187	99		57	43
10	м	190				10
	M	400	100			
80		193	100		37,3	45
51	M	194	88	- I	34	47
52	N	160	56		53	38
53	N	171	57		- 54	37
54	N	165	81		55	41
53	N	167	60		52,5	39
56		168	54		36	37
57	N	169				20
		100				
5 P				× *		
58	N .	105	0.3			

6. Leidke vajalikud arvkarakteristikute väärtused ka uuele tunnusele.

IN	103	Conv 💁	> Paste	33
N	172	58 Copy	19,60519	57
Vaatluste arv	68	68	68	68
Keskmine	172,9	70,0	23,2	55,1
Mediaan	170	65	22,48128	55
Standardhälve	9,2	16,5	4,3	2,3
Standardviga	1,1	2,0	0,5	0,3
Min	153	47	17,50639	49
Max	195	150	44,79083	63

Ülesanne 2.

- Arvutage tudengite pikkuse, massi, kehamassiindeksi, peaümbermõõdu ja jalanumbri kohta nii palju arvkarakteristikuid, kui protseduur *Descriptive Statistics* (*Data*-sakk → *Data Analysis*...) võimaldab.
- Leidke ka 90%, 95% või 99% usalduspiirid keskmistele väärtustele. Mida need usalduspiirid näitavad?

Tööjuhend

1. Arvkarakteristikute arvutamine: Data-sakk \rightarrow Data Analysis... \rightarrow Descriptive Statistics

Selgitus protseduuri Descriptive Statistics lisavalikutest eelmisel lehel:

- valiku Summary statistics tulemusena arvutab Excel kaheteistkümne põhilise arvkarakteristiku väärtused;
- valiku *Confidence Level for Mean: 95%* tulemusena arvutatakse suurus, mis tuleb keskmisele juurde liita või lahutada, saamaks ülemist ja alumist usalduspiiri; vaikimisi kasutatava 95% asemele võib ise trükkida mõne teise arvu (näiteks 90 või 99);
- valikute Kth Largest ja Kth Smallest tulemusena väljastatakse järjekorranumbriga K väärtus vastavalt suurima ja vähima väärtuse poolt lugedes;

Kth Largest = 1 korral on tulemuseks maksimaalne väärtus ja *Kth Smallest* = 1 korral minimaalne väärtus. Et aga miinimum ja maksimum sisalduvad ka valiku *Summary statistics* väljundis, on antud juhul mõistlik tellida näiteks suuruselt järgmised väärtused (siis K = 2).

• Tulemus:

PIKKUS		MASS		КМІ		PEA_YMB		JALANR						
											<			
Mean	172,912	Mean	69,9559	Mean	23,2443	Mean	55,0735	Mean	40,5294		ali	Keskmin	e	
Standard	1,11395	Standard	2,00575	Standard	0,51925	Standard	0,27603	Standard Error	0,34266		ka l	Standard	lviga	
Median	170	Median	65	Median	22,4813	Median	55	Median	39,5	- i	S	Mediaan		
Mode	169	Mode	60	Mode	22,7583	Mode	55	Mode	39	i	цп	Mood		
Standard	9,18587	Standard	16,5398	Standard	4,28181	Standard	2,2762	Standard Deviation	2,82563	i	ım	Standard	lhälve	
Sample \	84,3802	Sample \	273,565	Sample \	18,3339	Sample \	5,18108	Sample Variance	7,9842		ar	Dispersi	oon	
Kurtosis	0,19534	Kurtosis	7,1781	Kurtosis	9,17023	Kurtosis	1,67566	Kurtosis	-0,70166	X	V S	Ekstsess e järsakuskord		iskordaja
Skewnes	0,68154	Skewnes	1,9978	Skewnes	2,36624	Skewnes	0,11299	Skewness	0,6123		tat	Asümmeetriakordaja		aja
Range	42	Range	103	Range	27,2844	Range	14	Range	11		ist	Ulatus =	Max - Mir	1 I
Minimun	153	Minimun	47	Minimun	17,5064	Minimun	49	Minimum	36	1	ics			
Maximun	195	Maximun	150	Maximun	44,7908	Maximun	63	Maximum	47		ŧ :			
Sum	11758	Sum	4757	Sum	1580,61	Sum	3745	Sum	2756	1	llej			
Count	68	Count	68	Count	68	Count	68	Count	68	ノト	mu	Vaatluste arv		
Largest(1	195	Largest(1	150	Largest(1	44,7908	Largest(1	63	Largest(1)	47	1	IS			
Smallest	153	Smallest	47	Smallest	17,5064	Smallest	49	Smallest(1)	36	L	1			
Confiden	2,22345	Confiden	4,00349	Confiden	1,03642	Confiden	0,55096	Confidence Level(95,0%)	0,68395					

• Lisalugemine – uuritava tunnuse jaotuse kuju iseloomustamine

Enamustest protseduuri *Descriptive Statistics* väljundis sisalduvatest arvkarakteristikutest on ennegi juttu olnud.

Siiski on siin ka kaks uut suurust, mida kasutatakse peamiselt uuritava tunnuse jaotuse kuju iseloomustamiseks – need suurused on **ekstsess ehk järsakuskordaja** (ingl *kurtosis*) ja **asümmeetriakordaja** (ingl *skewness*). Sellest, mida need karakteristikud mõõdavad, annavad parema ettekujutuse järgnevad joonised:

• Jaotuse sümmeetrilisuse üle otsustamisel kasutatakse sageli (asümmeetriakordaja asemel) keskmise ja mediaani võrdlust.

Nimelt, kuna aritmeetiline keskmine on tundlik erandlike väärtuste suhtes, siis vihjab

 $\overline{x} > med$ sellele, et jaotuse kuju on parempoolse asümmeetriaga (leiduvad üksikud teistest palju suuremad väärtused, ja seega asümmeetriakordaja > 0),

 $\overline{x} < med$ aga sellele, et jaotuse kuju on vasakpoolse asümmeetriaga (leiduvad üksikud teistest palju väiksemad väärtused, ja seega asümmeetriakordaja < 0).

- Vaadake, kas kirjeldatud seos keskmise ja mediaani erinevuse ning asümmeetriakordaja väärtuse vahel peab paika ka teie kursuse tudengite kehamõõtude puhul.
- 2. Leidke 90%, 95% või 99% usalduspiirid keskmistele väärtustele. Mida need näitavad?

Kuna *Excel* ise usalduspiire välja ei arvuta, tuleb need enesel leida.

Selleks võib protseduuri *Descriptive Statistics* väljundtabelit täiendada kahe reaga, kuhu tuleks selguse huvides ka kirja panna, mida uued arvutatavad suurused enesest kujutavad.

Seega, tõlgendades antud andmestikku kui valimit Maaülikooli esmakursuslastest aastal 2011, võib väita, et esimese kursuse tudengite keskmine pikkus jääb 95% tõenäosusega vahemikku 170,7 cm kuni 175,1 cm. St, et mõõtes ära **kõigi** Maaülikooli esimese kursuse tudengite pikkused ja arvutades keskmise, peaks saadud tegelik keskmine 95% tõenäosusega jääma leitud piiridesse.

- Kui keegi leidis 95% usalduspiiride asemel 90% või 99% usalduspiirid, siis need peaksid tulema vastavalt (171,1; 174,8) ja (170,0; 175,9). Miks on 90% usaldusintervall kitsam?
- Arvutage usaldusintervall ka teiste tunnuste keskmistele väärtustele ning püüdke neist vähemalt ühe kohta sõnastada lõppjäreldus!!